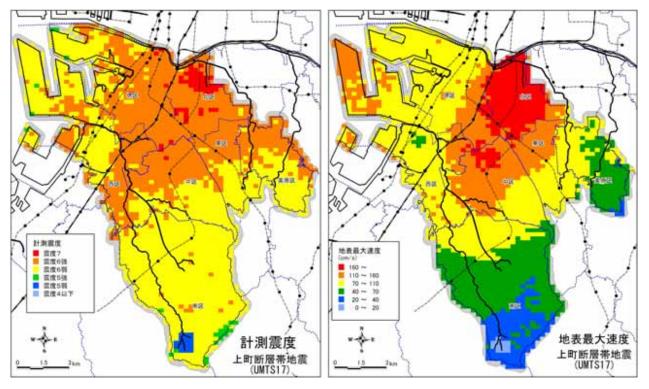
資料1 手法Aによる地震動予測結果

手法Aの検討では入倉・三宅(2001), Irikura et al.(2004)による断層破壊設定法に倣って非一様破壊シナリオを複数想定し,以下の計 11 断層破壊ケースの地震動分布を統計的グリーン関数法によって計算した。以下に,代表ケースの計測震度等の予測結果を示す。

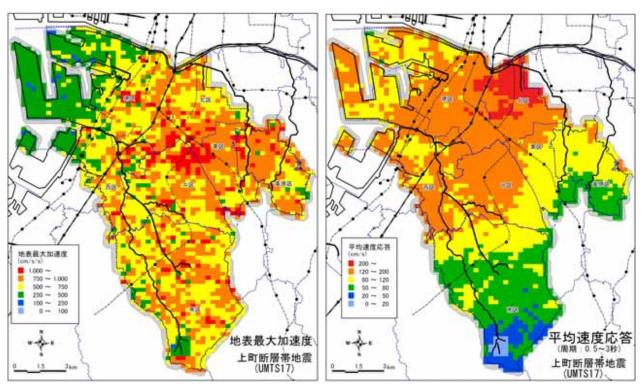
なお,手法Aの予測結果は,大阪堆積盆地が地震動に及ぼす影響は含まれないが,地域に影響の大きいシナリオとしての震度分布などが得られる。

表 1-1 に , 手法 A の予測結果を示すケースと , その地震シナリオから予想される被害状況の概要を示す。表中ハッチのかかっているケースが , 各断層に対して , 蓋然性が高いとして設定した地震シナリオである。


上町断層帯 5 ケース

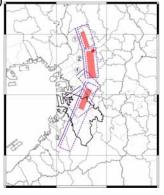
生駒断層帯 3ケース(1ケースは松原断層地震)

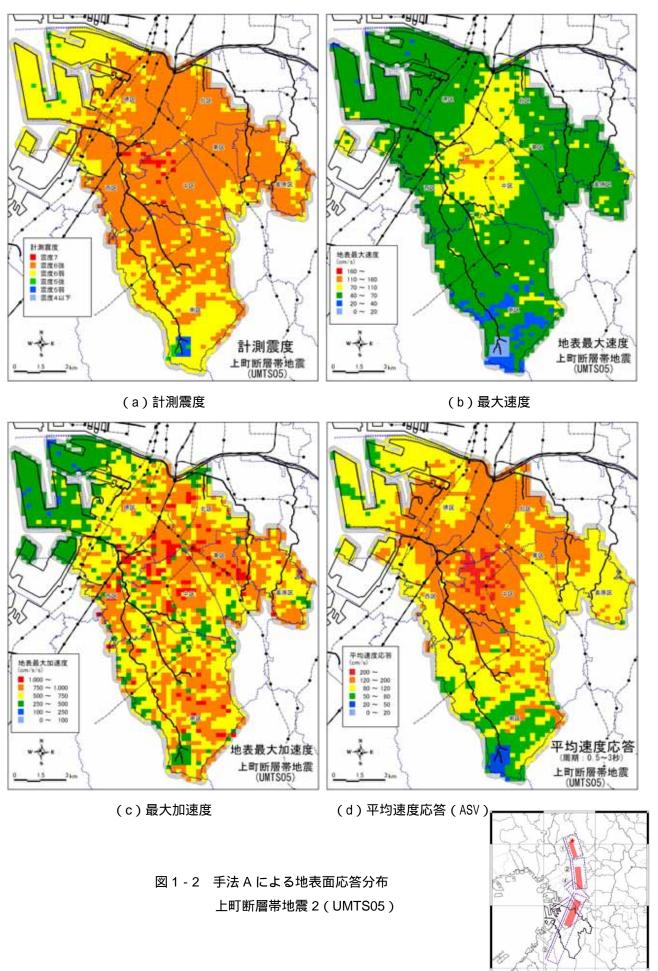
中央構造線断層帯 3ケース

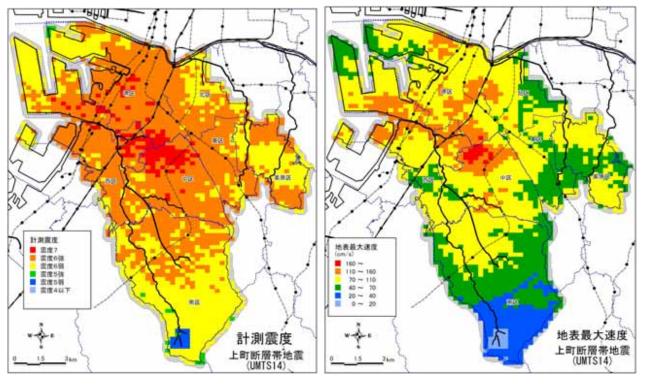

表 1-1 手法 A による予測結果を示す地震シナリオと予想される被害状況

想定ケース		破壊開始点	検討ケース	備考
上町断層帯地震	1	断層中央 (大阪市の北)	UMTS17	地形・地質学的に蓋然性の高いモデル 北部から広域に甚大な被害が発生
	2	最北端 (吹田市の北)	UMTS05	堺市域に長周期成分が大きいモデル 長周期構造物の被害が顕著に発生
	3	堺市直下 (堺市の中央)	UMTS14	卓越周期1秒を想定したモデル 中央部に甚大な被害が発生
	4	堺市直下 (堺市の北)	UMTS15	卓越周期1秒を想定したモデル 北部・沿岸域に甚大な被害が発生
	5	堺市直下 (堺市の中央)	UMTS10	卓越周期1秒を想定したモデル 中央部に甚大な被害が発生
生駒断層帯地震	1	断層中央 (奈良)	IKMS06	地形・地質学的に蓋然性の高いモデル 東・南部の脆弱箇所に被害が発生
	2	堺市直近 (堺市の東外)	IKMS08	堺市に影響の大きいモデル 東域に広〈甚大な被害が発生
松原断層地震		堺市直下 (堺市の東)	IKMS05	"松原断層"を想定したモデル 美原区付近に局所的に被害が発生
中央構造線 断層帯地震	1	断層南西端 (和歌山)	MTLS06	地形・地質学的に蓋然性の高いモデル 南・東部の脆弱箇所に被害が発生
	2	堺市直下 (堺市の東)	MTLS04	堺市に影響の大きいモデル 堺市の中央~南域に広〈被害が発生
	3	断層中央付近 (和歌山)	MTLS03	堺市に影響の大きいモデル 堺市の中央~南域に広〈被害が発生

(a)計測震度

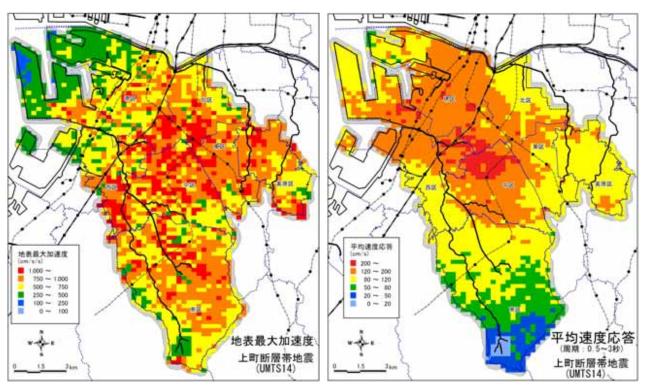

(b)最大速度



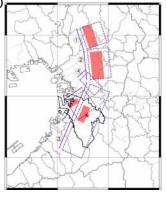

(c)最大加速度

(d)平均速度応答(ASV)

図 1 - 1 手法 A による地表面応答分布 上町断層帯地震 1 (UMTS17)



(a)計測震度


(b)最大速度

(c)最大加速度

(d)平均速度応答(ASV)

図 1 - 3 手法 A による地表面応答分布 上町断層帯地震 3 (UMTS14)

資 - 4